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Cerebral malaria is associated with differential
cytoadherence to brain endothelial cells
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Abstract

Sequestration of Plasmodium falciparum-infected erythrocytes (IE)
within the brain microvasculature is a hallmark of cerebral malaria
(CM). Using a microchannel flow adhesion assay with TNF-acti-
vated primary human microvascular endothelial cells, we demon-
strate that IE isolated from Malawian paediatric CM cases showed
increased binding to brain microvascular endothelial cells
compared to IE from uncomplicated malaria (UM) cases. Further,
UM isolates showed significantly greater adhesion to dermal than
to brain microvascular endothelial cells. The major mediator of
parasite adhesion is P. falciparum erythrocyte membrane protein
1, encoded by var genes. Higher levels of var gene transcripts
predicted to bind host endothelial protein C receptor (EPCR) and
ICAM-1 were detected in CM isolates. These data provide further
evidence for differential tissue binding in severe and uncompli-
cated malaria syndromes, and give additional support to the
hypothesis that CM pathology is based on increased cytoadherence
of IE in the brain microvasculature.
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Introduction

Despite the significant reductions in mortality and morbidity of

malaria in the last decade, the percentage of patients infected with

Plasmodium falciparum that succumb to severe malaria (SM) is

not changing (WHO, 2017), with cerebral malaria (CM) contribut-

ing to much of the mortality. The overall mortality rate for CM in

children is 15–25%, with a recent MRI study showing that brain

swelling is strongly associated with fatal outcome in CM (Seydel

et al, 2015). The pathology of CM has been studied extensively

(Idro et al, 2005; Hawkes et al, 2013) but also debated for many

decades, as discussed in numerous reviews (Shikani et al, 2012;

Cunnington et al, 2013; Storm & Craig, 2014; Wassmer & Grau,

2017). What is clear is that the pathogenesis is multifactorial, with

a role for the immune response to the Plasmodium infection (Hunt

& Grau, 2003; Ioannidis et al, 2014; Dieye et al, 2016; Mandala

et al, 2017; Wolf et al, 2017) and obstruction of the microvascula-

ture by sequestration and rosetting (Rowe et al, 2009; Craig et al,

2012; Ponsford et al, 2012; White et al, 2013; Milner et al, 2015),

leading to endothelial dysfunction. Sequestration of P. falciparum-

infected erythrocytes (IE) in brain microvasculature is a hallmark

of human CM as shown in post-mortem studies (Pongponratn et al,

1991; Taylor et al, 2004), but whether this sequestration is due to

differential binding of IE to brain endothelium has been harder to

demonstrate.

The major mediator of parasite cytoadherence to endothelium is

P. falciparum erythrocyte membrane protein 1 (PfEMP1), a variant

surface antigen expressed on knobs on the IE surface and encoded

by approximately 60 var genes per parasite genome, with only one

PfEMP1 being expressed on the surface of any individual IE (Scherf

et al, 2008; Pasternak & Dzikowski, 2009). PfEMP1 is composed of

multiple Duffy binding-like (DBL) and cysteine-rich interdomain

region (CIDR) domains and can be classified into four main groups

A, B, C and E based on the 50 upstream sequence of the encoding

var gene (Fig 1; Smith, 2014). PfEMP1 binds to a range of receptors

and includes the mutually exclusive CD36 and endothelial protein C
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receptor (EPCR)-binding phenotypes, mediated by N-terminal CIDR

domains (Kraemer & Smith, 2006; Semblat et al, 2006, 2015; Rask

et al, 2010; Hviid & Jensen, 2015). Approximately half of group A

PfEMP1 and a subset of group B/A chimeric PfEMP1, also known

as domain cassette 8 (DC8), bind to EPCR via CIDRa1 domains,

whereas group B and C PfEMP1 bind CD36 via CIDRa2-CIDRa6
domains. In addition, binding to intercellular adhesion molecule 1

(ICAM-1) is mediated via DBLb domains adjacent to the CIDR

domains and in some cases has been associated with a dual-binding

phenotype with EPCR (Lennartz et al, 2017).

In choosing which host receptors to study, we took into account

the findings that categories of PfEMP1 types are also associated with

in vivo expression in SM. A particularly strong example of this is

where parasites expressing var genes encoding PfEMP1 containing

EPCR-binding domains have shown a strong association with the

development of SM, including CM (Avril et al, 2012; Claessens et al,

2012; Lavstsen et al, 2012; Bengtsson et al, 2013; Bertin et al, 2013;

Jespersen et al, 2016; Kessler et al, 2017; Mkumbaye et al, 2017). In

vitro, parasites expressing EPCR-binding PfEMP1 show greater

degrees of binding to EPCR, as well as to ICAM-1 receptors, both of

which are expressed on brain microvascular endothelium (Turner

et al, 2013; Avril et al, 2016; Lennartz et al, 2017). ICAM-1 binding

has been mapped to some, but not all, DBLb domains found

adjacent to the N-terminal CIDR domains in about one-third of all

PfEMP1. A subset of ICAM-1-binding DBLb domains were recently

shown to be specific for group A EPCR-binding PfEMP1 and found

to be expressed at higher levels in parasites from CM patients than

in parasites from non-CM patients (Lennartz et al, 2017). Parasites

expressing CD36-binding PfEMP1 are found in many patient isolates

regardless of symptoms, although some data suggest that they may

constitute a smaller proportion of parasites in SM patients (Heddini

et al, 2001; Ndam et al, 2017), and are not seen in parasite isolates

taken from women with placental malaria (Smith et al, 2013).

Several other host receptors for PfEMP1 have been described,

however, while PfEMP1 proteins that bind these receptors have

been identified (Berger et al, 2013), links between cytoadherence

and paediatric CM have not been established, and these were not

tested in our study.

Infected erythrocytes binding to specific receptors during an

infection may have different functional consequences on the

endothelium and hence on disease severity. One clear example is

that by binding to EPCR, the IE interfere with production of acti-

vated protein C thereby launching the coagulation cascade, lead-

ing to increased thrombin production (Moxon et al, 2013) and the

potential to cause pro-inflammatory PAR1-mediated endothelial

activation (Petersen et al, 2015; Gillrie et al, 2016). Other

Figure 1. PfEMP1 domain structure.

A schematic presentation of PfEMP1 domain structure comprising a N-terminal head structure, 2-6 subsequent C-terminal domains, a transmembrane domain (TM) and

an intracellular acidic terminal segment (ATS) with known receptors indicated in bold. Receptor specificity is determined by combined DBL and CIDR domains with mutually

exclusive binding to EPCR and CD36 by different CIDRa domains in the head structure. Part of group A PfEMP1 and a particular subset of group B/A chimeric PfEMP1

(DC8) bind to EPCR via CIDRa1 domains, whereas group B and C PfEMP1 bind CD36 via CIDRa2-6 domains. The atypical group E VAR2CSA PfEMP1 binds placental

chondroitin sulphate A (CSA) via DBLpam1 and DBLpam2 domains. The binding phenotype of VAR 1, VAR3 and group A CIDRb/c/d domains is unknown, but they do not bind

EPCR or CD36. DBLb domains can be involved in ICAM-1 binding and are from both groups A and B. Not much is known about the other DBL domains (c/d/e/f), but the DBLe

and DBLf domains are implicated in IgM and a2-macroglobulin binding.
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PfEMP1-receptor interactions have been shown to activate signal-

ling pathways in endothelial cells (Wu et al, 2011; Gillrie & Ho,

2017), but the effect of these events on pathology is unclear. More

recent work has also suggested that as well as cytoadherence-

mediated events, the accumulation of sequestered IE in vessels

may facilitate endothelial dysfunction caused by the local release

of soluble mediators following schizont rupture (Gallego-Delgado

& Rodriguez, 2017).

Thus, it remains unclear why a particular child develops CM at

a particular time, as the vast majority of P. falciparum infections

do not lead to CM. In addition, most African children who develop

CM have had malaria previously without developing CM. One

possible mechanism to explain why a child develops CM at a

particular time is that they have been infected with a P. falciparum

variant that facilitates recruitment of IE to endothelium in the

brain. While multiple lines of evidence indicate that specific

PfEMP1 variants are associated with severe malaria, that associa-

tion has not been substantiated by directly measuring the binding

of IE to endothelial cells (EC). Thus, the question as to whether IE

from children with CM have cytoadherence properties that enable

them to bind to brain endothelium and thus enhancing their

sequestration in that site has not been tested. The extent of seques-

tration in the brain is unknown for non-CM cases, although post-

mortem observations of brain vessels from malaria-infected chil-

dren dying from other causes of coma (not CM) show much lower

levels of IE sequestration than CM cases (Milner et al, 2015).

Therefore, as a comparison, isolates from children with uncompli-

cated malaria (UM) have also been tested for their binding pheno-

type in the present study.

A number of studies have investigated cytoadherence of specific

PfEMP1 variants to human microvascular endothelial cells, but

these have been with laboratory strains or PfEMP1-modified para-

sites (Madkhali et al, 2014; Gillrie et al, 2015). Patient isolates

have also been investigated for their binding phenotype, but

mainly on purified protein and mostly under static conditions

(Craig et al, 2012; Almelli et al, 2014; Mahamar et al, 2017; Ndam

et al, 2017). While providing important evidence, these studies

were unable, largely for technical reasons, to combine the most

appropriate target (primary brain endothelium) and parasite

isolates as close to the patient sample as possible, with a physio-

logically relevant assay. To address our hypothesis that CM is

driven by increased binding of IE to brain endothelium, we

assessed whether IE freshly isolated from circulating blood of chil-

dren with CM preferentially bound TNF-activated primary brain

microvascular endothelium, compared to IE isolated from UM chil-

dren. We postulated that such a difference might be associated

with the expression of particular PfEMP1 variants and with binding

to specific endothelial receptors. We collected IE from carefully

characterised paediatric CM and UM cases in Malawi and deter-

mined cytoadherence to primary human microvascular endothelial

cells, with minimal in vitro expansion of the parasite population,

using a microfluidic flow device, an experimental design reflecting

in vivo physiology. Expression of PfEMP1 variants was investigated

by qPCR using the most up-to-date set of var domain type-specific

primers available to us.

To our knowledge, this study is the first study to employ such a

comprehensive approach to address the question of whether cytoad-

herence is involved in the pathogenesis of CM.

Results

Recruitment of study participants

Children were recruited over three malaria seasons from 2013 to

2015 using the selection criteria described in the Materials and

Methods section. Total CM cases admitted to the research ward

have been decreasing since 2010, from 165 cases to 48 (18) cases in

2013, 78 (26) in 2014 and 43 (14) in 2015. Numbers in brackets are

the recruited number of children for our cytoadherence study. To

improve the specificity of the clinical diagnosis of CM, only children

with at least one feature of malarial retinopathy (Maccormick et al,

2014) were included, resulting in the recruitment of a total of 58

cases. A total of 53 UM cases, matched on an annual basis to the

number of CM cases, were included. Clinical characteristics of the

total UM and CM cohorts and the cases used for experiments are

summarised in Table 1. The median age of children with UM was

higher than children with CM. Compared to children with UM, chil-

dren with CM had significantly higher median pulse and respiratory

rates, higher median lactate concentration and lower median

haematocrit levels, indicators of severe disease (WHO, 2016). Ten

of the children with CM (17%) died. To achieve 2% parasitaemia

needed for the cytoadherence assays, only blood samples from chil-

dren with at least 2% peripheral parasitaemia were utilised. The

clinical characteristics of these selected cases were similar to the

overall cohort of children with each of these clinical syndromes.

Cytoadherence of clinical isolates to microvascular endothelial
cells under flow

Isolated IE were cultured until the parasites were at the trophozoite

stage, when PfEMP1 is expressed on the surface of the IE, and a

suspension of 2% parasitaemia and 5% haematocrit was prepared.

Using the microfluidic device, cytoadherence to primary human

microvascular endothelial cells, derived from brain (HBMEC) and

dermis (HDMEC), was determined under flow conditions. Isolates

from CM cases demonstrated an average binding of 110 IE/mm2

(95% CI: 37–182) to HBMEC which was significantly higher

(P = 0.041) than HBMEC binding of UM cases at 43 IE/mm2 (95%

CI: 28–57; Fig 2). In contrast, there was no difference in binding to

HDMEC (P = 0.171) between IE from CM cases (average 165 IE/

mm2, 95% CI: 81–250) and UM cases (average 110 IE/mm2, 95%

CI: 71–149). Binding of UM isolates to HBMEC was significantly

lower compared to HDMEC (P = 0.002), which was not the case for

CM isolates. For isolates from CM patients, avid binding was a

common feature; isolates that bound well to HBMEC also bound

well to HDMEC with a Spearman’s correlation coefficient of 0.83

(P < 0.0001). For UM isolates, however, there was no correlation

between binding to HBMEC and HDMEC (r = 0.20, P = 0.28). A

recent publication by Azasi et al (2018b) showed that DC8-PfEMP1

expressing IE do not bind EPCR in the presence of normal human

serum. Therefore, we tested whether adding 10% human serum to

the binding buffer would decrease the cytoadherence of selected

patient isolates to HBMEC (Appendix Fig S2). Human serum did not

change the binding of three patient isolates that showed significant

EPCR binding to HBMEC. The binding of DC8 variant IT4var19 was

also not affected by the addition of human serum in our flow assay

system.
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Inhibition of cytoadherence to microvascular endothelial cells
under flow

To assess the differential role of the endothelial receptors ICAM-1,

EPCR and CD36, binding was determined in the presence of inhibi-

tory antibodies, aICAM-1 and aCD36, or recombinant protein,

rEPCR (Fig 3). Paired analysis of the inhibition binding data is

shown in Fig 3A and significant inhibition was observed for all the

EC-inhibitor combinations, except for inhibition of binding of UM

isolates to HDMEC by rEPCR. The data are summarised as percent-

age inhibition in Fig 3B–D, to compare receptor-dependent adher-

ence between CM and UM. Approximately half of the IE displayed

ICAM-1-dependent binding (> 50% inhibition) to both HBMEC and

HDMEC, but there was no significant difference between CM and

UM isolates nor between the dependency of ICAM-1 binding to

HBMEC and HDMEC. CD36 expression is extremely low on primary

HBMEC (Avril et al, 2016), so studies on binding to CD36 were only

performed with HDMEC. Inhibition of cytoadherence by aCD36 anti-

body was variable and not significantly different between the CM

and UM isolates (P = 0.23), although there was a trend for higher

CD36-dependent binding in UM isolates. EPCR-dependent binding

also varied, with a subset of isolates binding particularly well to

EPCR. This was more pronounced for CM isolates binding to

HBMEC, but not significantly different from UM isolates

(P = 0.073). There was also no significant difference between rEPCR

inhibition of binding to HBMEC and HDMEC. For a few isolates,

there was more binding in the presence of aICAM-1 antibody or

rEPCR compared to binding in the absence of inhibitor (Fig 3B and

D), and this was more often the case for UM isolates. The reason for

this is unclear; we were unable to collect the bound IE to investigate

this phenomenon further.

Correlations between IE binding and clinical parameters

We assessed the association between the in vitro cytoadherence

properties of the IE and clinical parameters associated with seques-

tration. For the CM cases, the degree of IE binding to HDMEC was

positively correlated with peripheral parasite density at recruitment

(r = 0.56, P = 0.011). Binding of IE to HBMEC was less clearly

associated with peripheral parasite density (r = 0.40, P = 0.056).

Differences in levels of binding were not due to variation in para-

sitaemia of the cultured IE, as the binding assay was performed

at a standardised 2% parasitaemia. Binding of CM isolates was
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P = 0.002
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Figure 2. Cytoadherence of IE from CM and UM cases to HBMEC and
HDMEC.

IE were isolated, and binding to HBMEC and HDMECwas determined under flow

conditions. Number of IE bound per mm2 EC surface was calculated and shown

is the mean � 95% CI for 26 CM and 33 UM cases on HBMEC and 21 CM and 35

UM cases on HDMEC on a log scale. P-value was calculated by two-tailed

unpaired t-test. The dotted line is 20 IE/mm2, the cut-off value for inclusion of

the inhibition data.

Table 1. Clinical characteristics of the study participants.

Total cohort
uncomplicated
malaria (n = 53)

Total cohort
cerebral malaria
(n = 60) P-value

Used in assay
uncomplicated
malaria (n = 35)

Used in assay
cerebral malaria
(n = 27) P-value

Age, months 51 (30–74) 42 (24–59) 0.04 53 (38–89) 36 (23–50) 0.005

Gender, % female 53 47 51 48

Axillary temperature, °C 38.8 (38.2–39.4) 39.0 (38.1–40.0) 38.8 (381–39.4) 39.0 (37.9–40.0)

Pulse rate, beats/min 124 (107–140) 157 (140–175) < 0.0001 124 (114–146) 156 (133–175) 0.0001

Systolic blood pressure, mmHg 98 (91–102) 95 (86–104)a 97 (91–99) 94 (85–103)b

Respiratory rate, breaths/min 30 (25–30) 40 (36–52) < 0.0001 28 (24–30) 41 (32–52) < 0.0001

Blood glucose, mmol/l 5.7 (5.1–6.4) 5.4 (4.4–6.8) 5.8 (5.1–6.5) 5.0 (4.5–6.7)

Blood lactate, mmol/l 2.9 (2.0–3.4) 4.5 (2.4–8.8) < 0.0001 2.9 (1.9–3.5) 4.6 (2.3–8.2) 0.0006

Haematocrit, % 35.0 (30.0–38.0) 22.0 (18.0–25.6) < 0.0001 36.0 (29.5–38.0) 20.4 (16.8–25.1) < 0.0001

HRP2, lg/ml 7.1 (2.2–9.9)c 9.5 (3.1–11.0)d

Parasitaemia, parasites/ll (×104) 11.8 (4.2–38.4) 29.8 (14.6–59.9)

Platelets/ll (×104) 4.9 (2.4–9.6)c 4.9 (2.4–9.8)d

Shown are the median with the interquartile range in brackets for the total cohort and the cases used in the binding assays. For each variable, statistical
differences between UM and CM cases were determined by Mann–Whitney U-test (continuous variables) or Fisher’s exact test (categorical variables), and
P-values < 0.05 are indicated. HRP2 = histidine-rich protein 2. Group size in a = 50, b = 21, c = 55 and d = 24 children.
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negatively correlated with peripheral platelet levels for both binding

to HDMEC (r = �0.66, P = 0.001) and HBMEC (r = �0.56,

P = 0.005). We were unable to assess the association between IE

adhesion and fatal outcome as only three children for whom we had

binding data died. None of the other clinical characteristics, includ-

ing histidine-rich protein 2 concentrations, showed any significant

A

B C D

Figure 3. Inhibition of cytoadherence of IE from CM and UM cases to HDMEC and HBMEC by aICAM-1 and aCD36 antibody and rEPCR.

A IE were isolated, and binding to HBMEC and HDMEC was determined under flow conditions in the absence and presence of 5 lg/ml aICAM-1 or aCD36 antibody or
50 lg/ml rEPCR. Number of IE bound per mm2 EC surface was determined.

B Using the same data, percentage inhibition by aICAM-1 antibody was calculated relatively to binding in the absence of antibody.
C Using the same data, percentage inhibition by rEPCR was calculated relatively to binding in the absence of inhibitor.
D Using the same data, percentage inhibition by aCD36 antibody was calculated relatively to binding in the absence of antibody.

Data information: (A) shown is the paired analysis between the absence and presence of inhibitor, with number of cases (n) indicated. Statistical significance was
determined by two-tailed paired t-test, and the P-value is shown; ns is not significant. (B–D) shown are the mean � 95% CI, and no significant differences were
determined with a two-tailed unpaired t-test. Each assay was only conducted once for each isolate. The number of isolates tested can be seen from the dot plot.
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correlation with the cytoadherence of IE. For the UM cases, none of

the parameters assessed were significantly correlated with cytoad-

herence. Peripheral parasite density (as per WHO standard) and

platelet counts were not determined at admission in UM cases;

however, after processing the UM blood samples, parasitaemia was

determined by microscopy of Giemsa-stained smears and no correla-

tion was found between parasitaemia and binding intensity.

Analysis of var gene transcripts

To analyse the PfEMP1 domain structure (Fig 1) of the patient

isolates, transcript levels of the coding var genes were determined.

qPCR was performed and var transcript values (Tu) were calculated

and compared between CM and UM cases (Table 2). A detailed

description of coverage, sensitivity and limitations of the primer set

is published in Mkumbaye et al (2017) and summarised in

Appendix Table S1. There were significantly higher levels of tran-

scripts encoding CIDRa1 domains in CM compared to UM cases

(median Tu = 104.6 for CM versus 9.3 for UM, P < 0.001). This was

also true when comparing levels of CIDRa1-encoding group B/A

(DC8, CIDRa1.DC8: median Tu = 33.9 for CM versus 4.6 for UM,

P < 0.001) or group A transcripts (CIDRa1.A: Tu = 43.6 for CM and

4.3 for UM, P < 0.001). Transcript levels of some of the individual

CIDRa1 domain types, such as CIDRa1.1, CIDRa1.4, CIDRa1.5a,
CIDRa1.6a and CIDRa1.7, were also significantly higher in CM

cases. Primers targeting the non-EPCR-binding group A N-terminal

CIDRd reported higher transcript levels in CM, whereas primers for

group A CIDRc or CD36-binding group B and C CIDR domains did

not. The two primer sets DBLa2/1.1/1.2/1.4/1.7 and DBLa1.5/1.6/
1.8, predicted to mainly target CIDRa1 or CIDRb/c/d-containing
PfEMP1, respectively, reported higher levels in CM compared to

UM, with relative levels of DBLa2/1.1/1.2/1.4/1.7 markedly higher

than DBLa1.5/1.6/1.8 levels. Data from primers targeting C-terminal

DBL domains showed that, although median transcript levels were

relatively low, var genes encoding ICAM-1-binding domains of both

group A (DBLb1/3-1) and group B (DBLb5) PfEMP1 were found at

significantly higher levels in CM versus UM cases, as were tran-

scripts encoding group A DC5, which has been linked to PECAM-1

binding (Berger et al, 2013). Likewise, the transcript levels of some

of the DBLe and DBLf domains: DBLf2a, DBLf2c, DBLf3, DBLf5
and DBLe2, were low, but significantly higher in CM cases. These

domains have been implicated in non-immune IgM and a2-macro-

globulin binding (Jeppesen et al, 2015; Stevenson et al, 2015a,b;

Pleass et al, 2016).

Correlations between IE binding and var gene expression data

We next investigated correlations between adhesion phenotypes

and var type expression data. Correlation coefficients rho (r) were

calculated for the Tu values of each primer cocktail with the binding

data, separated in binding to HBMEC or HDMEC of CM or UM

isolates. r was calculated by the Spearman correlation test, but with

relatively small group sizes not many P-values were < 0.05, and

after correction for multiple comparisons none of the correlations

was statistically significant. Appendix Table S2 shows the r-values

for the 15 correlations that were significant prior to correcting for

multiple comparisons, which were mainly detected for CM isolates

and for receptor-dependent binding. We recognise the lack of power

of this study to identify significant associations but provide these

data to guide future research focussed on the role of the domains,

including those with less well-known functions, such as the DBLf
and DBLe domains.

Discussion

Post-mortem studies have shown that IE sequestration in the brain

is a feature of CM (Taylor et al, 2004; Ponsford et al, 2012) and

have shown a strong association between IE sequestration and key

pathogenic processes occurring in CM: endothelial activation/in-

flammation (Turner et al, 1994), microvascular thrombosis (Doro-

vini-Zis et al, 2011; Moxon et al, 2013, 2015) and endothelial

barrier disruption (Dorovini-Zis et al, 2011). Children who died of

CM also have sequestered IE in the retinal microvessels, which

correlates with the amount of sequestration in the brain (Barrera

et al, 2015). To assess the role of cytoadherence in CM pathology,

some studies have found correlations between the in vitro adherent

properties of patient isolates with specific host receptors (Newbold

et al, 1997; Rogerson et al, 1999; Heddini et al, 2001; Mayor et al,

2011; Ochola et al, 2011; Almelli et al, 2014), and the importance of

specific PfEMP1 variants has been identified using parasite isolates

from patients with different disease syndromes. Based on the

hypothesis of cytoadherence to brain endothelium being involved in

CM pathogenesis and following a process involving selecting and

panning IE on HBMEC (Claessens et al, 2012; Lavstsen et al, 2012;

Turner et al, 2013), EPCR was identified as the main receptor of

PfEMP1 DC8 and DC13 variants responsible for HBMEC binding. It

is worth noting that despite extensive evidence of the involvement

of these PfEMP1 variants in SM by qPCR genotyping, a recent publi-

cation has questioned whether EPCR acts as a primary adhesion

receptor to endothelium for some of these PfEMP1 variants (Azasi

et al, 2018b). Taken together, these data, showing that severe

malaria is associated with parasite variants with particular cytoad-

herence characteristics, provide strong evidence that sequestration

may be a critical process in the pathogenesis of CM.

To look more directly at the role of cytoadherence in disease,

we assessed whether parasite isolates from well-defined clinical

cases of CM, refined by observation of malaria retinopathy (Mac-

cormick et al, 2014), bind human brain microvascular endothelium

under physiological flow conditions more readily than do those

from UM controls. Our main finding is that parasite isolates from

CM and UM patients exhibit differential binding capacities to

primary brain endothelial cells, in particular that UM isolates bind

less well to HBMEC than CM isolates. For CM patient isolates,

binding intensity also correlated with peripheral parasitaemia and

the degree of thrombocytopenia. We examined whether this

cytoadherence phenotype is determined by the expression of speci-

fic PfEMP1 variants by performing var gene analysis by qPCR.

Higher transcript levels of ICAM-1- and EPCR-binding var gene

domains were detected in CM isolates, which for the EPCR-binding

var domains seems to correlate with EPCR-dependent binding to

HBMEC. We also observed potential associations between cytoad-

herence and the transcript levels of the DBLf and DBLe domains,

indicating new roles for these domains in receptor-mediated

cytoadherence, but focussed studies on these are needed to confirm

our initial observations.
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Table 2. Transcript levels of var gene domains by patient group.

Target

Predicted receptor

UM CM

P-valueDomain Group n Tu n Tu

CIDRa1.1 B/A EPCR 34 2.6 (1.0–28.9) 22 24.1 (2.0–114.9) < 0.0001

CIDRa1.8a B/A EPCR 30 1.0 (1.0–24.4) 23 2.9 (1.0–75.0) 0.040

CIDRa1.8b B/A EPCR 31 1.0 (1.0–8.5) 23 1.0 (1.0–16.2)

Sum: CIDRa1.DC8 B/A EPCR 31 4.6 (1.0–37.1) 22 33.9 (4.7–166.1) < 0.0001

CIDRa1.4 A EPCR 34 1.0 (1.0–5.6) 24 3.0 (1.0–29.7) 0.002

CIDRa1.5a A EPCR 33 1.0 (1.0–2.1) 23 1.0 (1.0–30.1) 0.004

CIDRa1.5b A EPCR 34 1.0 (1.0–15.5) 23 4.6 (1.0–105.0)

CIDRa1.6a A EPCR 31 1.0 (1.0–1.0) 23 1.0 (1.0–20.2) 0.005

CIDRa1.6b A EPCR 31 1.0 (1.0–8.5) 23 1.0 (1.0–8.4)

CIDRa1.7 A EPCR 34 1.2 (1.0–10.4) 23 8.5 (1.0–35.4) 0.0007

Sum: CIDRa1.A A EPCR 30 4.3 (1.0–35.6) 23 43.6 (6.9–136.7) < 0.0001

Sum:CIDRa1_all A & B/A EPCR 30 9.3 (1.0–81.6) 23 104.6 (14.2–218.2) < 0.0001

DBLf2a 31 1.0 (1.0–3.1) 23 1.3 (1.0–6.6) 0.043

DBLf2b 25 1.0 (1.0–2.8) 19 1.0 (1.0–6.6)

DBLf2c 25 1.0 (1.0–3.9) 19 1.0 (1.0–32.4) 0.048

DBLf3 31 1.5 (1.0–9.4) 23 3.2 (1.1–24.0) 0.009

DBLf4 31 4.3 (1.0–75.2) 23 6.3 (1.1–55.0)

DBLf5 31 1.4 (1.0–17.9) 23 6.6 (1.0–129.9) 0.011

DBLf6 25 1.5 (1.0–10.0) 18 3.8 (1.0–27.0)

Sum: DBLf_all 25 21.3 (3.4–95.3) 19 44.0 (13.9–389.1) 0.035

DBLe2 25 1.0 (1.0–1.0) 19 1.0 (1.0–5.4) 0.004

DBLe6 25 1.4 (1.0–9.8) 19 5.7 (1.0–33.2)

DBLe11 25 1.0 (1.0–15.3) 19 1.3 (1.0–23.7)

DBLe13 31 8.9 (1.0–87.6) 23 14.2 (1.1–126.8)

DBLe14 25 1.0 (1.0–1.0) 19 1.0 (1.0–2.9)

Sum: DBLe_all 25 16.8 (1.06–123.8) 19 36.1 (4.1–147.8)

DBLb1/3-1 A ICAM-1 33 1.0 (1.0–7.7) 23 6.6 (1.0–24.1) 0.0001

DBLb1/3-2 A (ICAM-1) 34 1.3 (1.0–30.8) 23 1.5 (1.0–29.1)

DBLb5 B ICAM-1 34 2.1 (1.0–26.1) 23 4.7 (1.0–31.2) 0.021

DC5 A PECAM-1 32 1.0 (1.0–19.3) 23 5.3 (1.0–61.9) 0.024

CIDRa3.1/3.2 B/C CD36 34 1.1 (1.0–7.8) 23 2.0 (1.0–8.0)

CIDRd A 33 2.4 (1.0–25.0) 23 13.7 (1.4–69.7) 0.003

CIDRc3.1 A 28 1.0 (1.0–6.5) 19 1.0 (1.0–1.5)

DBLa1all A 34 31.1 (3.2–111.3) 23 90.5 (35.2–257.8) < 0.0001

DBLa2/1.1/1.2/1.4/1.7 A 34 32.3 (6.4–117.7) 23 134.8 (26.7–428.1) < 0.0001

DBLa1.5/1.6/1.8 A Non-EPCR 34 16.5 (2.3–66.9) 23 46.9 (4.9–107.6) 0.0006

var2csa E CSA 25 4.8 (1.0–44.7) 19 8.7 (1.0–135.3)

var3 A 25 1.0 (1.0–5.2) 19 1.0 (1.0–6.8)

CIDRa1.2-K 23 1.0 (1.0–1.4) 18 1.0 (1.0–1.4)

CIDRa1.2-K+CIDRa1.3-K 31 1.0 (1.0–3.1) 23 1.0 (1.0–4.0)

The transcript unit (Tu) was calculated for the primer sets and shown are the median, with the 10th and 90th percentiles in brackets. In bold are the specific
groups, which are the sum of the Tu values of primers listed above it. For DBLf_all, only the highest Tu value of either DBLf4 or DBLf6 was included. Receptor
names in brackets are probable and left blank when unknown. Number of cases in the analysis (n) is specified, and statistical differences between UM and CM
cases were determined by Mann–Whitney U-test and P-values < 0.05 are indicated.
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Cerebral malaria isolates adhered equally well to HBMEC and

HDMEC, and binding levels were highly correlated, in agreement

with earlier work for laboratory strains that were selected for bind-

ing to HBMEC and which bound well to other types of non-brain

microvascular EC (Claessens et al, 2012; Avril et al, 2013). This is

also reflected by comparable levels of IE sequestration across many

organs in the autopsy studies of children with CM (Seydel et al,

2006; Milner et al, 2014). The UM isolates bind well to HDMEC too,

but less avidly to HBMEC, and there is no correlation between their

binding to HBMEC and HDMEC. The overall significantly higher

binding of CM isolates to HBMEC supports the role of intracerebral

cytoadherence and sequestration of infected erythrocytes in CM.

The reduced binding of UM isolates to HBMEC compared to binding

to HDMEC would result in the majority of IE binding in locations

other than the brain and thus avoiding CM pathology and high

mortality risk. We hypothesise that UM isolates, which are thought

to bind to CD36, do not adhere well to HBMEC because brain

endothelial cells constitutively express little CD36 (Avril et al,

2016). The binding of patient isolates to purified receptors, includ-

ing CD36, has been investigated in many studies, but mostly under

static conditions, and the results are conflicting (Rogerson et al,

1999; Yipp et al, 2000; Heddini et al, 2001; Mayor et al, 2011;

Ochola et al, 2011; Almelli et al, 2014). In our study, binding in the

presence of aCD36 antibodies was only determined for HDMEC and

there was no significant difference in CD36-dependent binding of

CM or UM isolates. However, it is notable that there are two popula-

tions of UM isolates, with high and low CD36-dependent binding.

There were no differences between the two patient populations in

terms of clinical parameters or var gene transcripts with the avail-

able primers, but it would be interesting to analyse the var gene

usage of the two sub-populations further.

Previous studies, including ours, suggested independent associa-

tions between binding to ICAM-1 (Ochola et al, 2011) and EPCR

(Smith et al, 2013; Turner et al, 2013) with CM. Therefore, we used

specific inhibitors of binding to these receptors to measure the

dependency of binding via ICAM-1 and EPCR to endothelium in our

assay system. There were no significant differences either in ICAM-

1- or in EPCR-dependent binding between the UM and CM isolates,

but there was a trend of higher EPCR-dependent binding of CM

isolates to HBMEC (P = 0.073). The number of observations for

binding inhibition by rEPCR was relatively low as we only had

access to rEPCR from 2015. Paired analysis showed that there was

no significant reduction in binding of UM isolates to HDMEC in the

presence of rEPCR, indicating that EPCR does not play a major role

in the adhesion of the UM isolates to HDMEC. EPCR binding by IE

expressing the DC13 and DC8 variants has recently been questioned

with data showing that DC13 expressing IE do not bind EPCR

in vitro and binding of DC8 expressing IE to EPCR and brain

endothelium was reduced in the presence of 10% human serum

(Azasi et al, 2018). This effect of human serum was not seen with

three patient isolates and It4var19 in our assay (Appendix Fig S2).

This discrepancy may be explained by different assay conditions;

Azasi et al determine static binding to the CD31-negative HBEC-5i

cell line, while we used primary HBMEC under flow conditions.

This highlights a number of limitations in using in vitro methods

to investigate the relationship between cytoadherence and disease.

Besides cell and assay type, in standardising the in vitro assay

parameters at 2% parasitaemia and 5% haematocrit under constant

shear stress, we can only mimic in vivo dynamics, for which

parasitaemia is variable and haematocrit is much higher at 30–50%.

In our assay system, we could not collect the bound IE, hindering

further molecular analysis of the adherent IE population. Refined

flow adhesion techniques would be needed to overcome these

limitations.

The IE that bind from the parasite suspension to HBMEC under

flow conditions in our assays are a representation of the parasite

types that might be recruited to brain endothelium from peripheral

blood flow in vivo. In addition, parasite populations in peripheral

blood, the only population readily accessible in patients, have been

shown to resemble the same parasite populations as the sequestered

IE (Montgomery et al, 2006). To ensure we were investigating

brain-specific binding, we used TNF-activated primary HBMEC,

with HDMEC as a comparator. That we did not find significant dif-

ferences in receptor usage between the UM and CM isolates could

be explained by the infection consisting of multiple P. falciparum

genotypes, including those underlying var gene expression (Mont-

gomery et al, 2006, 2007). It is also not as simple as a one-to-one

interaction with one PfEMP1 variant binding to one specific recep-

tor. Lately, dual receptor binding by one PfEMP1 variant has been

reported, with some PfEMP1 being able to bind both EPCR and

ICAM or CD36 and ICAM-1 simultaneously (Avril et al, 2016;

Lennartz et al, 2017). We also determined binding of the patient

isolates to HBMEC and HDMEC in the presence of aICAM-1 anti-

body and rEPCR combined, but the limited data (Appendix Fig S3)

showed no significant difference between UM and CM isolates, nor

between HBMEC and HDMEC binding. It is clear that HBMEC bind-

ing of some isolates is not affected by inhibition with aICAM-1 and

rEPCR, indicating that other receptors may play a role in cytoadher-

ence to brain endothelium, a phenomenon also seen with selected

laboratory strains (Yipp et al, 2007; Avril et al, 2016; Mahamar

et al, 2017; Metwally et al, 2017).

The domain structure of var genes expressed by the patient

isolates was determined with a set of extensive qPCR primers. Tran-

scripts encoding EPCR-binding domains, both when assessed by

individual CIDRa1 domain subsets or summarised in the group B/A

and A (CIDRa1.DC8, CIDRa1.A), as well as transcripts encoding the

CIDRa1-associated DBLa domains, were all expressed higher in CM

isolates. This was also the case for transcripts encoding group A

non-EPCR-binding domains and the ICAM-1-binding domains

DBLb1/3-1 (group A) and DBLb5 (group B), all in line with previous

reports (Lavstsen et al, 2012; Bertin et al, 2013; Bernabeu et al,

2016; Kessler et al, 2017; Mkumbaye et al, 2017; Shabani et al,

2017). In our study, transcripts encoding other domains, found C-

terminally in both group A and B PfEMP1, showed higher levels in

CM compared to UM cases. This may be attributed to the inclusion

of retinopathy in our CM cases, producing more definitive case defi-

nition. Two recent studies compared the var gene expression

between retinopathy-positive and retinopathy-negative children and

found a number of differences, concluding that group A var genes

are more commonly found in the CM patient population that are

retinopathy-positive (Abdi et al, 2015; Shabani et al, 2017). Higher

transcripts of the DBLf2a, DBLf2c, DBLf3, DBLf5 and DBLe2
domains were detected in the CM cases, of which DBLf2a, DBLf3
and DBLe2 were also reported in a recent study (Kessler et al, 2017;

Mkumbaye et al, 2017). The functions of the C-terminal DBLe and

DBLf domains are not fully understood, but some are involved in
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non-immune IgM and a2-macroglobulin binding (Semblat et al,

2006, 2015; Jeppesen et al, 2015; Stevenson et al, 2015a; Pleass

et al, 2016). The variant nature of var genes makes it difficult to

design qPCR primers with high enough specificity and selectivity to

cover transcripts encoding CD36-binding CIDR domains (group B

and C var genes). For this reason and due to the different speci-

ficities and amplification bias of the primers, exact determination of

var transcript distribution cannot be determined for each isolate

(Mkumbaye et al, 2017).

We attempted to discover whether specific var domains contribute

to the binding phenotype of the patient isolates by determining the

correlation between IE binding and qPCR data. However, our study

was not powered to examine these correlations with sufficient statis-

tical significance after correction for multiple comparisons. The

uncorrected results from this analysis, shown in Appendix Table S2,

require further studies to identify statistically significant associations.

We identified an association between the expression of EPCR-

binding PfEMP1 and IE cytoadherence to EPCR, but only for the CM

isolates and mainly to HBMEC. While positive correlations provide

straightforward evidence for associations, negative correlations can

also be informative. The negative correlation between ICAM-1-

dependent EC binding and levels of transcript encoding CIDRa1
domains (EPCR-binding) in UM isolates suggests that dual EPCR

and ICAM-1 binding is not a prominent phenotype in UM. This indi-

cates that EPCR is a major component of cytoadherence to HBMEC

in CM, but not necessarily as the only primary receptor, as

suggested by a recent study (Azasi et al, 2018). Recruitment of IE to

the EC could also occur via other receptors and then subsequently

bind to EPCR causing pathology linked to degradation of the control

of coagulation pathways.

To validate the relevance of binding characteristics to pathogene-

sis, we assessed whether the level of cytoadherence in vitro corre-

sponded with clinical characteristics in the patients from whom the

parasites had been isolated. There was a correlation between the

avidity of binding of CM isolates and peripheral parasitaemia and

platelet counts at the time of admission of the CM cases. The

increased binding (at standardised assay conditions of 2% para-

sitaemia and 5% haematocrit) to EC correlated with increased para-

sitaemia, but with decreased platelet numbers. The negative

correlation between peripheral platelets and binding intensity is

interesting as thrombocytopenia has been used as a predictor for

malaria (Lampah et al, 2015; Thachil, 2017) and specifically for

P. falciparum SM (Gerardin et al, 2002; Cserti-Gazdewich et al,

2012). A recent study in children recruited from the same hospital

in 2015–2016 showed that low platelet levels were also associated

with retinopathy-positive CM cases and brain swelling (Kessler

et al, 2017). Some studies have shown that CM cases have more

platelets localised in the brain microvasculature (Grau et al, 2003;

Dorovini-Zis et al, 2011) and show increased platelet-mediated

clumping of IE (Pain et al, 2001; Wassmer et al, 2008) and platelet

involvement in the adhesion of IE to human microvascular EC lack-

ing CD36 (Wassmer et al, 2004). We postulate that these processes

lead to platelet sequestration and consumption, which is augmented

by the presence of IE with high binding capabilities, and therefore a

decrease in peripheral platelet counts. Activation of platelets and

platelet consumption leads to a pro-coagulant state characterised by

an increase in thrombin and von Willebrand factor, which are

demonstrated in SM (Dorovini-Zis et al, 2011; O’Sullivan et al,

2016; Thachil, 2017). In addition, anti-coagulation and endothelial

protective pathways are affected in CM through a decrease in EPCR

and thrombomodulin and thus dysfunction of the activated protein

C pathway (Moxon et al, 2013, 2015; O’Sullivan et al, 2016).

A number of mechanisms have been proposed to explain the

pathology of CM, and it is unlikely that a single molecular process is

involved. However, the identification of EPCR as a cytoadherence

receptor and its association with CM in several studies, including

this one, provides a compelling direction for future research.

Binding of IE to EPCR inhibits EPCR interaction with activated

protein C, leading to deregulation of inflammation, coagulation and

loss of endothelial barrier integrity (Gillrie et al, 2015; Sampath

et al, 2015; Bernabeu et al, 2016; Kessler et al, 2017). This might be

one of the reasons why the consequences of sequestration in the

brain can be catastrophic. From our data and others, we do not find

specific brain-binding IE in CM as CM isolates bind well to a variety

of EC, which is also demonstrated by the sequestration of IE in

many other organs (Avril et al, 2013; Milner et al, 2014, 2015). IE

sequestration in the brain, irrespective of EPCR binding, leads to

loss of EPCR function (Moxon et al, 2013); thus, the combined low

levels of EPCR on HBMEC and binding of IE to EPCR lead to reduced

levels of activated protein C and subsequent increase in thrombin,

impacting on inflammation and coagulation, as reviewed in Bern-

abeu and Smith (2017). Furthermore, the endothelium responds

locally to release of soluble content of sequestered IE leading to the

disruption of barrier function (Gallego-Delgado & Rodriguez, 2017).

Thus, cytoadherence of IE to brain endothelium may alter the

balance of endothelial activation and protective pathways via a

number of mechanisms, all driven by the binding properties of CM

isolates to brain endothelium.

This work has shown that CM is associated with increased adhe-

sion of IE to brain endothelium in vitro and that this adhesion is not

specific to cerebral vascular endothelium. Indeed, it is the reduced

ability of binding to brain EC that characterises isolates from UM

patients that strengthens the case for the role of sequestration in the

pathology of CM.

Materials and Methods

Recruitment of study participants

In this prospective study, children were recruited at the Queen Eliza-

beth Central Hospital, Blantyre, Malawi. The study was approved

by the ethics committees of the College of Medicine, University of

Malawi (protocol P.08/12/1264) and LSTM (protocol 12.29).

Recruitment of CM cases took place at the Paediatric Research Ward

under an overarching CM study. The inclusion criteria for this study

were as follows: children aged between 1 and 12 years old; periph-

eral P. falciparum parasitaemia; at least 4+ on a thick blood smear

(equals 10–100 parasites per high power field, equivalent of 1–10%

parasitaemia. 1% parasitaemia is equivalent to 100,000 parasites/

ll); Blantyre Coma Score ≤ 2 on admission and no other causes of

coma; at least one specific feature of malarial retinopathy, as deter-

mined by funduscopic examination by a trained clinician (White

et al, 2001; Maccormick et al, 2014); and informed consent from

the accompanying parent or guardian. Recruitment of UM cases

took place at the paediatric A&E department, and inclusion criteria
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were as follows: age between 1 and 12 years old, peripheral P. falci-

parum parasitaemia of at least 4+, fever, Blantyre Coma Score of 5

and informed consent from the parent or guardian. Exclusion crite-

ria for both groups were as follows: gross signs of malnutrition, clin-

ical manifestations of advanced HIV/AIDS and for UM and any

features of severe malaria, as defined by WHO (2000). The study

was in compliance with the principals of the Declaration of Helsinki

and the Belmont Report. The following clinical variables were docu-

mented for each anonymised patient: age, sex, weight, temperature,

respiratory and pulse rate, blood pressure, blood glucose and lactate

concentrations, packed cell volume, duration of fever, medications

in the last 2 weeks and hospital admissions in past year; and addi-

tionally for CM: HIV status, PfHRP2, platelets per ll blood and para-

site density per ll blood (calculated from thick blood smears

according WHO standards). Venous blood, ≤ 1 ml for CM and 3–

4 ml for UM, was collected in citrate tubes and stored at 4°C until

processing. Treatment of the children was according to national

guidelines with artesunate replacing quinine in 2014 for CM cases

and in 2015 for UM cases. As a consequence, most cases admitted

to the research ward in 2015 had received treatment prior to study

recruitment, thus affecting parasite viability. Therefore, a small

number of cases from 2008 were shipped to LSTM, of which data

for two isolates were obtained.

Processing of whole blood

Blood was centrifuged at 500 g for 5 min, plasma collected and

stored at �80°C. Blood cells were diluted with Incomplete RPMI

Medium (IRM: RPMI 1640 with 25 mM HEPES, 11 mM glucose,

2 mM glutamine, 0.2% NaHCO3, 0.2 mM hypoxanthine, 25 mg/l

gentamicin, pH 7.4) and layered onto LymphoprepTM, centrifuged at

700 g for 25 min at RT, and the peripheral blood mononuclear cells

were removed. From the remaining blood cells, the granulocytes

were removed with plasmagel, and the infected erythrocytes (IE) at

ring stage were cultured in Complete RPMI Medium (CRM: IRM

with 0.5% Albumax II) at 2% haematocrit (HCT) and < 7% para-

sitaemia. Normal red blood cells were obtained from malaria-naı̈ve

volunteers and thoroughly washed in IRM. After 30–40 h, when

developed into trophozoites expressing PfEMP1 on the IE surface,

the IE were used for the binding assay. Immediately after process-

ing, 50–100 ll of IE was also cryopreserved in glycerolyte (25 mM

phosphate buffer pH 6.8, containing 57% glycerol, 16 g/l sodium

lactate and 0.3 g/l KCL) and 50–100 ll resuspended and stored in

TRIzol� at �80°C.

Characterisation of HBMEC and HDMEC

To ensure that EC characteristics and receptor expression were

maintained at higher number of passages and that receptor expres-

sion was comparable between HBMEC and HDMEC, the EC were

characterised by flow cytometry. Confluent monolayers of cells were

incubated with 10 lg/ml acetylated low-density lipoprotein, labelled

with 1,10-dioctadecyl-3,3,30,30-tetramethyl-indocarbocyanine perchlo-

rate (Dil-Ac-LDL, Tebu) for 4 h at 37°C. Labelled cells were detached

with Accutase�, washed with cold PBS/1% BSA/2 mM EDTA (P/B/

E), and Dil-Ac-LDL was measured in the phycoerythrin channel of

the flow cytometer. To determine receptor expression, cells were

detached with Accutase�, washed with cold P/B/E, labelled with

conjugated antibody for 50 min at 4°C, washed with cold P/B/E and

fixed in 2% paraformaldehyde prior to measurement on the flow

cytometer. Antibodies used: FITC-conjugated mouse anti-human

CD31, FITC-conjugated mouse anti-human CD36, PE-conjugated rat

anti-human EPCR (all Biolegend) and APC-conjugated mouse anti-

human ICAM-1 (BD).

Binding to microvascular endothelial cells under flow

To minimise var gene switching (Scherf et al, 1998; Peters et al,

2007), the binding assay was performed, if possible, in the 1st devel-

opmental cycle; occasionally, assays were delayed to the 2nd or 3rd

cycle. More than 90% of the UM and 75% of the CM cases were

used in the 1st or 2nd cycle. The binding assay under flow conditions

was performed using the Cellix microfluidics system (https://cel

lixltd.com/), as previously described (Madkhali et al, 2014). Briefly,

HBMEC (Cell Systems, US) or HDMEC (Promocell, Germany) were

cultured as per manufacturer’s instructions and used up to passage

9, whilst retaining their endothelial characteristics as shown in

Appendix Fig S1. The cells were stimulated overnight with 10 ng/ml

TNF, dislodged with Accutase� and seeded in Vena8 biochips (Cel-

lix) coated with 100 lg/ml fibronectin. Medium was changed every

hour, and after 2–3 h, when cells formed a confluent monolayer, an

IE suspension of 2% parasitaemia and 5% haematocrit in binding

buffer (RPMI 1640 with 25 mM HEPES, 11 mM glucose, 2 mM

glutamine, pH 7.2) was flowed through at shear stress of 0.4 dyne/

cm2 for 5 min at 37°C. A wash with binding buffer was performed

for 7–9 min to remove unbound IE and bound IE were counted in

15 fields by microscopy using 200× magnification and the mean IE/

mm2 EC cell surface calculated. To determine the role of three

endothelial receptors in binding of IE, the assay was carried out in

the presence of 5 lg/ml aICAM-1 (clone 15.2, Serotec) or 5 lg/ml

aCD36 (clone IV-C7, Sanquin, The Netherlands) antibody or 50 lg/
ml recombinant EPCR (kind gift of Prof. M. Higgins, Oxford Univer-

sity). Percentage inhibition was calculated relative to binding in the

absence of inhibitor and inhibition data were only used if binding in

the absence of inhibitor was at least 20 IE/mm2, to exclude binding

variability by low levels of binding. This additional constraint on

data collection resulted in a decreased number of observations for

the inhibition data. The various conditions tested increased the

duration of the assay and prevented us to measure replicates. There-

fore, we counted 15 fields throughout the channel in the biochip.

Most of the assays that resulted in binding data were performed in

Malawi using fresh isolates (75% for the UM isolates and 62% for

the CM isolates), but at a later stage, some of the assays were

carried out in Liverpool from frozen parasites, which were shipped

in a dry shipper to the UK.

Determination of var gene transcripts

Infected erythrocytes at ring stage were stored in TRIzol� after

processing the blood sample, and RNA was isolated by chloroform

extraction and isopropanol precipitation, DNase treated (TURBOTM

DNase, Ambion) and reverse transcribed (Tetro cDNA Synthesis Kit,

Bioline) as previously described (Lavstsen et al, 2012). qPCR was

carried out with SYBR Green PCR Master Mix (QuantiTect, Qiagen)

with the var gene-specific primer set developed by the Lavstsen

group consisting of 38 primer cocktails using the following cycling
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conditions: 95°C for 15 min; 40 cycles of 95°C for 30 s/50°C for

40 s/65°C for 50 s; and a dissociation step of 95°C for 1 min/55°C

for 30 s/95°C for 30 s. Primers were validated with dilutions of 3D7

gDNA on our qPCR system (Agilent Technologies, Stratagene).

Detailed description of the primers can be found in Mkumbaye et al

(2017) and are summarised in Appendix Table S1, including the

description of four additional primers. Levels of var transcripts were

determined relative to the endogenous housekeeping genes seryl-

tRNA synthetase and aldolase using the formulae ΔCt var-

primer = Ct var-primer � Ct average endogenous primers. The

transcript unit (Tu) was calculated as Tu = 2ð5�DCt var�primerÞ with any

ΔCt var-primer > 5, which is a low abundance transcript, assigned a

value of 5, resulting in Tu = 1 (Lavstsen et al, 2012). qPCR data for

which the melting temperature of the primer cocktail was out of the

expected Tm range (Mkumbaye et al, 2017) were also assigned a Tu

value of 1. A Tu value of 32 equates to equal transcript levels as the

endogenous control genes.

The primers targeting DBLf4 and DBLf6 domains have overlap-

ping specificities, and therefore, the highest Tu value of one of the

primer sets was used when the total Tu value of DBLf_all was calcu-

lated. Selected primer cocktails were used when RNA amounts were

still scarce.

Statistical analysis

Patient sample size prior to the study was calculated based on the

cytoadherence data from Ochola et al (2011). Based on the dif-

ference in binding between CM and UM, a power of 80% and a

significance of 5%, a sample number of 23 per group were calcu-

lated. The binding assays were performed by one person, who also

counted the IE bound to the EC. This was done immediately after

the wash-step (without fixation). P-values for differences in the

binding assay were determined with an unpaired two-tailed t-test

and for the qPCR and clinical data with the Mann–Whitney U-test

for continuous variables and Fisher’s exact test for categorical vari-

ables (Prism, version 5; GraphPad, USA). The correlation coefficient

rho was calculated with two-tailed non-parametric Spearman test

for cytoadherence data and clinical data (Stata, version 11; Stata-

Corp, USA) and for cytoadherence data and qPCR data (Prism). To

observe trends for the latter, correlations were not corrected for

multiple comparisons and all correlations with a P-value ≤ 0.1 were

included. This lenient cut-off was chosen to allow the inclusion of

relatively high correlations of the inhibition binding data for CM

isolates, for which fewer data were available and which failed to

reach a P-value < 0.05 due to small sample size. To ensure biologi-

cal significance of the correlations, only those in which at least

25% of the isolates had Tu values of ≥ 16 are included in

Appendix Table S2. This cut-off value was also used by Mkumbaye

to define a reasonable level of transcripts and facilitate the interpre-

tation of the data (Mkumbaye et al, 2017).

Expanded View for this article is available online.
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Problem
Most malaria cases in Africa are the result of an infection with the
human parasite Plasmodium falciparum, and the complications leading
to severe malaria cause the majority of deaths. One syndrome of
severe malaria, cerebral malaria (CM), is characterised by the accumu-
lation of infected erythrocytes (IE) in the small blood vessels of the
brain. The process by which IE bind to the endothelial cells lining the
blood vessels is called cytoadherence, and over the years, several host
receptors have been identified that are able to support the binding of
IE via P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1
is a highly variable protein consisting of different combinations of
adhesive domains that provide a changing pattern of IE binding to
host endothelium. This variation in adhesion potential has led to the
hypothesis that the differential pathology seen in malaria infection
(only 1–2% of the over 200 million cases will go on to develop severe
disease) may be due to the different endothelial interactions mediated
by PfEMP1 variants and specifically, for cerebral malaria, caused by
the ability of IE to bind efficiently in the brain.

Results
Several studies have attempted to correlate the binding phenotype of
P. falciparum patient samples with clinical outcome with variable
results due to the major technical challenges involved in this type of
study. Key to understanding the role of adhesion in recruitment of IE to
specific tissues such as the brain is the use of a relevant target for bind-
ing within a physiologically relevant assay system and the use of para-
site samples as close to patient sampling as possible. To deliver this, we
established flow-based adhesion assays to primary human microvascu-
lar endothelium, derived from brain and dermis, in our laboratories in
Malawi and performed binding assays using patient-derived parasite
samples from well-defined clinical paediatric cases with minimal
in vitro expansion in culture. In parallel, we used molecular techniques
to type the PfEMP1 variants involved in this adhesion.
Our results show that binding of IE from patients with CM to human
brain microvascular endothelium (HBMEC) is higher than that seen with
IE from patients with uncomplicated malaria (UM). However, when
binding of CM- and UM-derived IE was examined to non-brain endothe-
lial cells [human dermal microvascular endothelial cells (HDMEC)], the
levels of binding were comparable, resulting in significant more binding
of IE of UM patients to HDMEC compared to HBMEC. This suggests that
in the majority of cases, represented by UM, P. falciparum avoids target-
ing the brain and that CM cases represent a subset of adhesion pheno-
types that allow efficient binding to the cerebral vasculature. Our work
represents one of the few direct strands of evidence directly linking the
ability of IE to bind to brain endothelium with CM. In addition, the
molecular typing has confirmed an important role for PfEMP1 variants
with a binding signature for the host receptor endothelial protein C
receptor in CM and implicated some novel PfEMP1 domains with poten-
tial associations with severe disease for further study.

Impact
By understanding the pathways that contribute to the pathology of
CM, we will be able to focus on a subset of binding variants on which
to base the design of potential interventions. From our research, we
now understand that binding of IE in the brain is an unusual property
for P. falciparum parasites and that this behaviour is important in
creating a local environment (rather than systemic) in the cerebral
vasculature that causes brain swelling, the latter having previously
been strongly associated with death from CM. Blocking or reversing IE
adhesion in the brain through the design of vaccines to restricted
PfEMP1 variants or receptor-based inhibitors could protect people from
developing CM and post-CM neurological sequelae. Knowing that the
local environment in the brain is important in disease also flags further
study on what is happening at the sites of IE cytoadherence and how
we might control the pathological processes operating there.
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